[image: image17.png]LISA PARK

Lisa Park
Public

	Version 1

3/21/2013

Language: English

	[image: image18.png]& Forecast sRM
. inputfldname: ©
Regression ©

“GSS_FORECAST_GSS_model 001" {
“sources”: {
“google_spreadsheet range”: {

“start_son™ 0,
“sheet_name" “SourceData’,
“ndex fild_name”: “ndex,
“end_row: 20,
“user_emal" “demo1@lisa-park.com’
“passord"; Tsasdemo’,

[image: image19.png]4] Octopus.

© File View
DEHl®o
Properes o x
41 [[m]] =4 =5 21 2 oo source
& Parameters. Model List. @
URL: http:/flocalhost: 7474/db/data/
User name:
Passwors:
© Source L
Input data Model List: i
o JsonNeotj
iz
= x pass,
U octopun.db”
M 3
s
“processors™ {3,
“sinks™ {
E “json_neodj”: {
et pame’: ™,
“url”: "http:/flocalhost: 7474/db/data/",
)'hawm'! -
e Processors | == Sources | <o Siks 3

175 modd

Copyright

Copyright © 2013 Lisa Park, Inc. All rights reserved.

No part of this documentation may be reproduced or transmitted in any form or for any purpose without the express permission of Lisa Park, Inc.

Lisa Park reserves the right to change the information contained in this document without prior notice.
Author(s)
Alex Mylnikov

Alex Ledvin

Reviewer(s)
History
	Version
	Author
	Date
	Change Description

	0.1
	Alex Mylnikov
	03/21/2013
	Initial Draft

	0.2
	Alex Ledvin
	03/27/2013
	Final Draf

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Contents

Copyright
2
Contents
3
1. Introduction
4
2. Data Semantics with Octopus
5
3. Mapping of Octopus Models to Neo4j
10
4. Work flow of data analysis with Octopus CIP and Neo4j
19
5. Summary
23
Glossary
24
Table of figures
25
Table of external links
26

1. Introduction
“If you do not know how to ask the right question, you discover nothing”

W. Edward Deming
The great steamroller called Big Data is picking up speed in each of its three vectors: Volume, Velocity, Variety. And just as rapidly, grows the list of high powered weaponry with names that have great prefixes like Dino- and Exa-, destined to capture the Big Data.

The question: "Why Big Data needs to be captured?" raises everyone's eyebrow. But let us pause and take a long hard look at present situation in the field of data analysis or business intelligence, and we might notice some disturbing truths. Regardless of size and cost, appliances used for working with Big Data employ in their processes the methodologies from the days of the "Old Data".

An ocean of information is poured onto the platters of hard drives, before the data is structured and queried endlessly according to "long ago established rules". Ah, the generals are always trying to fight the previous war. However, here are several modern age facts: querying Big Data, besides being hugely time consuming, can prove or disprove certain insights of which analyst is aware, while leaving in the dark trends of which analyst is completely unaware. More than 85% of data today is unstructured; its value is hidden in its semantics. Structuring this data and running statistical methods against a small numerical subset of it may prove to be an exercise in futility.

Methodology based on attempting to combine all of the data in one location for analytical processing is beginning to look like a dead end approach. In the modern world, the rate of growth in hardware capacity will always be outmatched by the rate of data growth.

Our vision is firmly rooted in this idea: it's not the raw data that needs to be collected in analytical databases, but rather the meta-data and processing algorithms (or models, in our case). For us, data semantics lies in the ways we use or process data. Since we are using models to handle data processing, models are the formal representation of data semantics.

This approach is a two-pronged strategy.

First, we can concentrate on detecting trends a lot more rapidly, practically in real-time. By abandoning querying, we can concentrate resources on processing thousands, perhaps even millions of data streams simultaneously.

Second, collected models can be easily searched by many parameters (source, destination, type of calculation, etc.), in effect creating an analytical knowledge base. As a result, the process of extracting analytical insights shrinks down to hours and minutes.

The new wave of databases, particularly graph database, allows explicit registration and management of direct relations between semantically connected data sets.

Lisa Park has developed Octopus Cloud Interactive Platform, to support interactive near real-time data analysis using semantic structure of Octopus processing models.

2. Data Semantics with Octopus
All data processing in Octopus CIP (Cloud Interactive Platform) is performed using Octopus Models.

Each Octopus model is defined as a triple (containing three elements):

· Model’s Source Data, connection to which is provided by a special type of processor - the Source Processor;

· Model’s processing Graph is a collection of interconnected processors. These processors are graph nodes and connections between them are graph edges;

· Model’s Output Data, connection to which is provided by the Sink Processor.

[image: image1.png]Model processing Graph

Output Data
(Sink
processor)

All Octopus models are stored in the Object Database (currently, it’s an Open Source version of db4o Object Database).

[image: image2.png]

Figure 2.

All models in the Object Data Store are uniquely identified.
There are at least two benefits that come with using database as a way to store Octopus models:

· Models become accessible from the Internet (with appropriate credentials);

· Models can be searched for by using query language very similar to standard SQL.

Below are examples of some relations that can be defined on Octopus models.

The first example presents two models related by sharing the same data source (in case of a database, the actual query may be different, but the database and even the table may be the same). The two models represent two different points of views on the same object presented in a specified database (or a table, or a spreadsheet).

The second example shows relationship between models based on result (output) data. This kind of association can be linked to relations by subject or solution. In fact, the two models can represent different approaches to solving the same problem.

The third example presents sequential execution of the models when output of the first one is used as a source data for the next one.
[image: image3.png]O .. R ... B

Figure 3.
Octopus models are built on sharable set of standard processors. All processors are uniquely identified and are stored in the same Object Database. This fact allows us to use Model processing Graph as an additional parameter in the query, while searching for related models.

One of the biggest concerns of “Big data” is combinatorial complexity of any analysis being performed on this data. A sizable team of data scientists can help a little in this case, but it also can create a new set of problems. Each of the team members is a scientist, meaning that each one has his or hers own view on the subject and the substance of analysis. Subconsciously, each of them will look for evidence that justifies their position. To eliminate this bias, we need to integrate investigative efforts of each team member in a coherent solution. In Octopus CIP, this is as simple as redirecting the output of each model to the same data resource. Figure below is an illustration of how this can be achieved.

[image: image4.png]Analyst 3

There are a lot of similarities in concept and implementation between Octopus CIP and Semantic Web. The definition of Octopus Model easily fits the RDF (Resource Description Framework) triple definition:
OBJECT -----> PREDICATE ------> SUBJECT
The similarity of Octopus Models and RDF triple definition gives us the ability to use very powerful set of tools, developed to work with RDF’s compatible information resources.

This fundamental relationship between Semantic Web and Octopus CIP expands capabilities of data analysis and leads us to natural integration with the wealth of information presented on the web, including all kinds of social data.

The following is a summary of features that integration of Octopus CIP and Semantic Web can bring to data analysis:

· Octopus CIP adds dynamic component to the explicitly defined static structure of semantic web, presented by RDF – Resource Description Framework.

· Octopus CIP dynamic structure represented by a set of models, reflects time and cause-and-effect related correlations among semantic web nodes. Extended Resource Description Framework (ERDF) is an extension of RDF that supports description of a dynamic component of semantic web.

· Octopus CIP is an event processing framework that evaluates and processes semantic web’s dynamic structure represented by Octopus models.

· Octopus CIP performs such processing in real time. It can also evaluate the correctness of the dynamic structure by comparing predicted and factual configurations of semantic web. Octopus models can recalculate and readjust semantic web’s dynamic structure to correct output from the following iterations of applied processing models.

· Using dynamic component of semantic web, Octopus CIP makes it possible to connect different semantic web’s nodes, even when they are not immediately related.
3. Mapping of Octopus Models to Neo4j
Neo4j is arguably the most known and widely used Graph database. Internally this is a very sophisticated system, but from the outside it looks pretty simple and intuitive. The main building blocks of any graph database are:

· Nodes, sometimes called vertexes, that are used to represent entities or things;

· Relations or edges are used to represent binary relationships between connected nodes;

· Properties are used to extend descriptions of nodes and relations.

Formal definition of graph database can be presented as follows:

GDB = <{N}, {R}, {PN = {PN(i)}}, {PR = {PR(i)}}>,

where

GDB – graph database;

{N} – set of nodes;

{R} – set of relations;

{PN = {PN(i)}} – set of node properties ;

{PN(i)} – collection of properties attached to the node N(i);

{PR = {PR(i)}} – set of relation properties;

{PR(i)} – collection of properties attached to the relation R(i).

As demonstrated in previous section, Octopus model structure is a graph. There are five node types that can distinguished in an Octopus model:

· Model itself (model_node);

· Source processor (source_processor);

· Processing Graph (PG_node) – collection of processors;

· Processor (processor) that performs data processing and calculations;

· Sink processor (sink_processor).

To connect nodes in Octopus model we will use the following relations:

· Model relation (model_rel) will connect source processor, processing graph and sink processor to model node;

· Processing graph relation (PG_rel) will connect processors to processing graph node.

Below is an illustration of these relations.
[image: image5.png]PG_node

PG_rel PG_rel

Octopus models are self-descriptive. Method model.toJson() returns full model description in JSON format. Let’s take a look at the screen-shot taken from Octopus Designer.

Here is an output, generated as a result of GSS_FORECAST_GSS_model_001 compilation in Octopus Designer.

{"GSS_FORECAST_GSS_model_001": {

 “model_id”: “dfd9780a-3c3c-4282-9ef5-a11d2f38e7c4 “,

 "sources": {

 "google_spreadsheet_range": {

 "start_row": 0,

 "sheet_name": "SourceData",

 "index_field_name": "index",

 "end_row": 20,

 "user_email": "demo1@lisa-park.com",

 "password": "isasdemo",

 "spreadsheet_name": "USFutures15"}},

 "dfd9780a-3c3c-4282-9ef5-a11d2f38e7c4_processors": {

 "forecast_srm": {

 "slope_std_error_name": "SSE",

 "intersept_std_error_name": "ISE",

 "index_field_name": "index",

 "sls_name": "SLS",

 "timewindow": 10,

 "formula_field_name": "formula",

 "confidence_interval_name": "SCI",

 "pearson_prod_moment_name": "PPM",

 "mse_name": "MSE"} },

 "sinks": {

 "forecast_to_gss": {

 "json_object_field_name": "JSON",

 "forecast_formula_field_name": "formula",

 "output_field_list": "CLOSE,index,formula,forecast",

 "start_row_for_output": 1,

 "forecast_horizon": 5,

 "sheet_name": "Forecast",

 "row_index_field_name": "index",

 "user_email": "demo1@lisa-park.com",

 "password": "isasdemo",

 "forecast_result_field_name": "forecast",

 "spreadsheet_name": "USFutures15"}}

 }

}
This model has five nodes:

1. Model - GSS_FORECAST_GSS_model_001 with a single property “model_id”;

2. Source processor - “google_spreadsheet_range” with seven properties that allow connecting to Google Drive and getting a range of rows from the specified Spreadsheet;

3. Processing graph - “dfd9780a-3c3c-4282-9ef5-a11d2f38e7c4_processors" that consists of a single processor;

4. Processor - “forecast_srm" that creates simple (linear) regression model using provided parameters;

5. Sink processor - “ forecast_to_gss” that performs forecast calculations using regression model formula, provides parameters and saves calculated results in the specified Google Spreadsheet.

Generated JSON description contains enough information to create model graph in Neo4j database. Octopus provides special processors to support conversion of model description from db4o object database to Neo4j graph database.

The first one is the “db4o_query” source processor that extracts list of models according to the provided query.

The second one is “json_neo4j” sink processor. This processor takes JSON description of each model from the list generated by “db4o_query” source processor and inserts it into Neo4j database. Examine the screenshot of Octopus Designer below.

As you can see, the model that transfers descriptions of selected models from db4o to Neo4j is quite simple – it has only two processors. By the way, this model can be used to insert JSON description of itself into Neo4j database as well. Let’s name this model as a DNC model – Db4o to Neo4j model Converter.

So far so good, but the final goal of moving Octopus model descriptions to Neo4j database is not to just dump them there. We want to use model description as a tool in discovering business data structure. To accomplish that, we are going to introduce two new graph building blocks:

· Cluster node (cluster_node);

· Cluster relation (cluster_rel).

Cluster node is a collection of similar models. Similarity is loosely based on some assumptions about semblance between models.

Cluster relation connects given model to a cluster or a cluster to some other cluster. Yes, it is correct. Cluster can represent collection of other clusters as well. Below is an illustration of cluster nodes and cluster relations.
[image: image6.png]cluster_rel
cluster_rel

cluster_rel

First, let’s take a look at clusters composed from models. There are many known techniques that can be used to deal with such relations. Their detailed analysis is outside the scope of this paper and is a subject for a separate discussion. Here, we are concentrating on concepts and will apply a simplified approach.

We have distinguished two main types of cluster relations, both of them using model properties as a base for decision-making process regarding existence of cluster_rel between given model and a cluster.

The attribute property is the property that is defined on the finite set of elements. Examples of attribute properties are: names, addresses, descriptions, SKU#, etc.

The value property is a numeric property that allows measurements and calculations. Examples of value properties are: price, age, quantity, etc.

Depending on the type of model’s properties, we define the following two cluster relations:

· attribute based cluster relations – att_cluster_rel;

· value based cluster relations - val_cluster_rel.

The formal definition of the att_cluster_rel is:

model_node(i) is related to cluster_node(j), if they have common elements in the maps of attribute properties and

[image: image7.emf]R (i , j)=

card (PMA (i) ∩ PCA(j))

card (PMA (i) ∪ PCA(j))

> L ;

where
R(i, j) is a proximity coefficient;
PMA(i) is a map of attribute properties in the model_node(i);
PCA(j) is a map of attribute properties in the cluster_node(j);
card is a function that returns the number of resulting set elements of intersection or union PMA and PCA;
L is a similarity threshold.

The formal definition of the val_cluster_rel is:

model_node(i) related to cluster_node(j), if measurable difference or distance between maps of value properties is less than required threshold

[image: image8.emf]D (i , j)= dist (PMV (i) , PCV (j))< d ;

where

D(i, j) is the distance between value properties of the model_node(i) and value properties of the cluster-node(j);
dist() is a function that calculates distance between two value propertie nodes;
PMV(i) is a map of value properties in the model_node(i);
PCV(j) is a map of value properties in the cluster_node(j);
d is the distance threshold.

The text above can create perception that we are trying to perform cluster analysis using very limited set of tools, but this is not a case. Our goal is different. We are using cluster analysis techniques to defined relations in the graph data base. Created graphs can be eventually used as a starting point for full scaled cluster analysis, but that’s a subject for future researches.

Let’s go back to Octopus model that populates of graph data base. This model inserts a model descriptions from db4o database into Neo4j graph database one model at the time. Below is the description of this process.

Initially, the graph database is empty.

1. DNC model will try to find the closest cluster to attach current model to it, but because graph database is empty, DNC will create a new cluster for this first model. The first cluster will inherit all properties of the model. As soon as new cluster is created, DNC model will try to find some other clusters to join. In our case there are no other clusters, so DNC will do nothing. Cluster and model will be connected by two relations.
[image: image9.png]att_cluster_rel| ~|val_cluster_rel

2. With the second model, DNC will again try to find the closest cluster to join. There are two possible cases:

· The proximity criteria for the new model from an existing cluster are satisfied. In this case new model will join existing cluster;

· Otherwise, DNC will create a new cluster for the model.

Below is an illustration for both cases.
[image: image10.png]

3. The same logic can be applied to all other models.

To emphasize the concept of building semantic web using Octopus models in conjunctions with Neo4j, we are intentionally trying to avoid many technical details.

Created structure does not conform to the definition of semantic web provided by W3C. For that reason we will call this structure the Cluster Web.

With support of Cypher query language, Neo4j provides a very flexible way of extracting data from the database.

The starting point for any data analysis is problem formulation. Each problem can be linked to some resulting indicators (P&L, growth indicator and so on). In Octopus models, all resulting indicators belong to the data defined in model's sink processors. This fact gives us a hint on how to assign specific sink processors of Octopus model set, as a starting point for Cypher query. Retrieved model nodes would represent all models related to specified sinks.

We will call this set of models a Model Context for given problem.

Accordingly, we will call a collection of all data defined in source processors of selected modes, as a Source Context of the problem; and collection of all sink data as Sink Context of the problem. Union of Source Context and Sink Context will represent integrated Data Context of the problem.

The formal definition of the problem context:

[image: image11.emf]C =〈 MC , DC 〉 , DC =〈 SourceC , SinkC 〉 ,

where
C is a Problem Context;
MC is a Model Context;
DC is a Data Context;
SourceC is a Source Context;
SinkC is a Sink Context.

In multi-user and collaborative environment, Problem Context and its elements may be implemented into graph database as a separated node type with all relations that describe context structure.
4. Work flow of data analysis with Octopus CIP and Neo4j
Before drawing a flow chart, we need to make emphasis on following Octopus models’ features:

· There is no direct way of communicating between models. All connections are performed via data, when output from one model is used as input for the other one;

· There is a set of models, specifically developed to support operations with db4o (Octopus model store) and Neo4j – the graph database that we are using to manage meta-data, describing Octopus models.

· So, we are using models to operate on model's meta-data graph. It should not create any confusion, but we still need to keep in mind that any data processing in Octopus CIP is performed by the models.

· There are five main stages in data analysis with Octopus CIP and Neo4j:

· Identification of the Problem Context by running Cypher queries against Neo4j database and extracting Data Context of the Problem Context;

· Accessing data specified in Data Context and integrating this data within the analytical workspace. Specially assigned in-memory data, Excel/Google spreadsheets or any other data stores can be used for this purpose;

· Performing data analysis on selected data sets with an appropriate collection of Octopus models.

· Evaluating results of analysis using alternative sets of Octopus models. Selecting optimal results or combining multiple results in the final solution.

· (Optional, but highly recommended). Recording solution and all analytical results into Neo4j database for further analysis and references.

To perform processing assigned for this stage, we need to implement additional graph node types that represent new types of entities. The extended list of node types includes:

1. Source processor - source_processor;

2. Sink processor – sink_processor;

3. Processor – processor;

4. Processing Graph – PG_node;

5. Model – model_node;

6. Cluster – cluster_node;

7. Source data context – SourceC_node;

8. Sink data context – SinkC_node;

9. Data context – DC_node;

10. Model context – MC_node;

11. Problem context – C_node;

12. Result of analysis – R_node;

13. Problem Solution – solution_node.

With new node types come new relations:

1. Source data context relation – SourceC_rel;

2. Sink data context relation – SinkC_rel;

3. Data context relation – DC_rel;

4. Model context relation – MC_rel;

5. Problem context relation – C_rel;

6. Problem analysis Result relation – R_rel;

7. Problem solution relation – solution_rel.

The extended lists of nodes and relations are not mandatory and can be customized depending on the requirements of particular business applications.

Stage 1
[image: image12.png]Query

Query

Query

Use queries to build Problem Context

[image: image13.png]‘4Model Context] ‘ Data Context ‘

‘ Source Context ‘ ‘ Sink Context ‘

Use Contexts to identify Data locations

Stage 2
[image: image14.png]

Use Octopus models to extract Data and integrate it in the Problem Work space

Stage 3
[image: image15.png]Analyst 3

Run Octopus models to perform Data analysis and to integrate analytical results from a team of analysts
Stage 4

Evaluate results of Data analysis with alternative sets of Octopus models. Select the optimal results or combine multiple results in the final solution.

Stage 5
[image: image16.png]

Use Octopus model to record Problem Solution Meta data back to Neo4j Database
5. Summary
The parallels presented in this document are quite transparent to us.

Neo4j and Octopus CIP both share very similar ideologies in their approach to data processing.

Meta-data analysis is fundamentally paramount aspect of the way Octopus CIP operates. It was rooted in this idea from the start. Octopus uses semantic, independent relations methodology to describe its Meta information.

Octopus was designed and developed as technology destined to live in the Cloud, where it could engage a large community of users generating meta-data.

Meta-data generation is the joint product resulting from the activities of a multitude of independent users, concerned with their part of meta-data structure only. Neo4j provides us with possibility to naturally combine all these meta-data structures into a coherent semantic web.

This resulting Meta-data structure can serve as a starting point, from which data analysis on Big Data can be performed.
Glossary
	Term
	Definition

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

Table of figures

Table of external links
	Chapter
	Description
	Link

	
	
	

	
	
	

	
	
	

Octopus Cloud Interactive Platform

Data Semantics with Neo4j

Document Owner

Alex Mylnikov

	Lisa Park inc.
73 Mulberry Dr, Holland Pennsylvania, USA 08003

	Title

Version 1

1/5/2013
	Page 24

_133703316.unknown

_138070824.unknown

_153403568.unknown

